Part Number Hot Search : 
F2119P F2119P 2409S FJAF6916 10N12 MA1136 RB2415 MC908
Product Description
Full Text Search
 

To Download HA17741 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HA17741/PS
General-Purpose Operational Amplifier (Frequency Compensated)
Description
The HA17741/PS is an internal phase compensation high-performance operational amplifier, that is appropriate for use in a wide range of applications in the test and control fields.
Features
* * * * * High voltage gain : 106 dB (Typ) Wide output amplitude : 13 V (Typ) (at RL 2 k) Shorted output protection Adjustable offset voltage Internal phase compensation
Ordering Information
Application Industrial use Commercial use Type No. HA17741PS HA17741 Package DP-8
Pin Arrangement
Offset Null Vin(-) Vin(+) VEE
1 2 3 4 (Top view)
- +
8 7 6 5
NC VCC Vout Offset Null
HA17741/PS
Circuit Structure
VCC
Vin(+) Vin(-)
Vout To VCC To VCC
VEE
1 Pin 5 Pin
Offset Null
Absolute Maximum Ratings (Ta = 25C)
Ratings Item Power-supply voltage Symbol VCC VEE Input voltage Differential input voltage Allowable power dissipation Operating temperature Storage temperature Vin Vin(diff) PT Topr Tstg HA17741PS +18 -18 15 30 670 * -20 to +75 -55 to +125 HA17741 +18 -18 15 30 670 * -20 to +75 -55 to +125 Unit V V V V mW C C
Note: These are the allowable values up to Ta = 45C. Derate by 8.3 mW/C above that temperature.
2
HA17741/PS
Electrical Characteristics
Electrical Characteristics-1 (VCC = -VEE = 15 V, Ta = 25C)
Item Input offset voltage Input offset current Input bias current Power-supply rejection ratio Voltage gain Common-mode rejection ratio Common-mode input voltage range Maximum output voltage amplitude Power dissipation Slew rate Rise time Overshoot Input resistance Pd SR tr Vover Rin Symbol VIO I IO I IB VIO/VCC VIO/VEE AVD CMR VCM VOP-P Min -- -- -- -- -- 86 70 12 12 10 -- -- -- -- 0.3 Typ 1.0 18 75 30 30 106 90 13 14 13 65 1.0 0.3 5.0 1.0 Max 6.0 200 500 150 150 -- -- -- -- -- 100 -- -- -- -- Unit mV nA nA V/V V/V dB dB V V V mW V/s s % M RS 10 k RS 10 k RL 2 k, Vout = 10 V RS 10 k RS 10 k RL 10 k RL 2 k No load RL 2 k Vin = 20 mV, RL = 2 k, CL = 100 pF Test Condition RS 10 k
Electrical Characteristics-2 (VCC = -VEE = 15 V, Ta = -20 to +75C)
Item Input offset voltage Input offset current Input bias current Voltage gain Maximum output voltage amplitude Symbol VIO I IO I IB AVD VOP-P Min -- -- -- 80 10 Typ -- -- -- -- -- Max 9.0 400 1,100 -- -- Unit mV nA nA dB V RL 2 k, Vout = 10 V RL 2 k Test Condition RS 10 k
3
HA17741/PS
IC Operational Amplifier Application Examples
Multivibrator A multivibrator is a square wave generator that uses an RC circuit charge/discharge operation to generate the waveform. Multivibrators are widely used as the square wave source in such applications as power supplies and electronic switches. Multivibrators are classified into three types, astable multivibrators, which have no stable states, monostable multivibrators, which have one stable state, and bistable multivibrators, which have two stable states. 1. Astable Multivibrator
R3 Vin(-) - VCC Vout Vin(+) C1 + VEE R1 RL R2
Figure 1 Astable Multivibrator Operating Circuit
Vin(+) 0
Vin(-) 0
Vertical: 5 V/div Horizontal: 2 ms/div Vout 0 Circuit constants R1 = 8 k, R2 = 4 k R3 = 100 k, C1 = 0.1 F RL = VCC = 15 V, VEE = -15 V
Figure 2 HA17741 Astable Multivibrator Operating Waveform
4
HA17741/PS
2. Monostable Multivibrator
R3 C1
-
VCC Vout
Input 0 C2 R2
+
VEE RL R1
Figure 3 Monostable Multivibrator Operating Circuit
Trigger input 0 Vin(+) 0 Vin(-) 0 Vertical: Horizontal: Circuit constants R1 = 10 k, R2 = 2 k R3 = 40 k, C1 = 0.47 F C2 = 0.0068 F RL = VCC = 15 V, VEE = -15 V
Vout 0
Figure 4 HA17741 Monostable Multivibrator Operating Waveform 3. Bistable Multivibrator
Vin(-) Vin(+)
+ -
VCC Vout
Input 0 C R2 RL
VEE
R1
Figure 5 Bistable Multivibrator Operating Circuit
5
HA17741/PS
Trigger input 0 Vin(+) 0 Vertical: 5 V/div Horizontal: 2 ms/div Vout 0 Circuit constants R1 = 10 k, R2 = 2 k C = 0.0068 F RL = VCC = 15 V, VEE = -15 V
Figure 6 HA17741 Bistable Multivibrator Operating Waveform Wien Bridge Sine Wave Oscillator
1S2074 H C3 R3 1 M R4 470 k 5.1 k RS
-
2SK16 H
Vout 50 k R1 RL
500
Rin C2 R2
+
C1
Figure 7 Wien Bridge Sine Wave Oscillator
30 k VOP-P = 2 V 10 k VCC = 15 V, VEE = -15 V C1 = C2/10 R1 = 110 k, R2 = 11 k
Oscillator Frequency f (Hz)
3k 1k
VOP-P = 20 V
300 100 30
10 30 p
100 p
300 p
1,000 p 3,000 p
0.01 0.03
0.1
C1 Capacitance (F)
Figure 8 HA17741 Wien Bridge Sine Wave Oscillator f-C Characteristics
6
HA17741/PS
Vertical: 5 V/div Horizontal: 0.5 ms/div Test circuit condition VCC = 15 V, VEE = -15 V R1 = 110 k, R2 = 11 k C1 = 0.0015 F, C2 = 0.015 F Test results f = 929.7 Hz, T.H.P = 0.06%
Figure 9 HA17741 Wien Bridge Sine Wave Oscillator Operating Waveform Quadrature Oscillator
Sin out CT2 RT2
A1 + + - A2
Cos out D1
V4 R11 R22 R44
CT1
-
RT1
C1 R1 D2
R33 V8
Figure 10 Quadrature Sine Wave Oscillator Figure 10 shows the circuit diagram for a quadrature sine wave oscillator. This circuit consists of two integrators and a limiter circuit, and provides not only a sine wave output, but also a cosine output, that is, it also supplies the waveform delayed by 90. The output amplitude is essentially determined by the limiter circuit.
7
HA17741/PS
30 CT1 = 102 pF CT2 = 99 pF C1 = 106 pF VCC = -VEE = 15 V RT1 = 150 k, RT2 = 150 k R1 = 151.2 k R11 = 15 k, R22 = 10 k R33 = 15 k, R44 = 10 k CT1, CT2, C1 1,000 pF Use a Mylar capacitor. With VOP-P = 21 VP-P and R22 = R44 = 10 k the frequency of the sine wave will be under 10 kHz. Sin out Cos out
10
3
1.0
0.3
0.1
0.03
0.01 100 p 1,000 p
0.01
0.1
CT1, CT2, C1 (F)
Figure 11 HA17741 Quadrature Sine Wave Oscillator
f-CT1, CT2, C1 Characteristics
Vertical: 5 V/div Horizontal: 0.2 ms/div Circuit constants CT1 = 1000 pF (990), CT2 = 1000 pF (990) RT1 = 150 k, RT2 = 150 k C1 = 1000 pF (990), R1 = 160 k R11 = 15 k, R22 = 10 k R33 = 16 V, R44 = 10 k VCC = 15 V, VEE = -15 V
Sin out 0 Cos out
Figure 12 Sine and Cosine Output Waveforms Triangular Wave Generator
Integrator
D1 R3 - A1 D2 R4 + R1 VA + Vout2 A2 - R1/R2 Vout1 C
R2
Hysteresis comparator
Figure 13 Triangular Wave Generator Operating Circuit
8
HA17741/PS
0 Vout1
Vout2
0 Vertical: 10 V/div Horizontal: 10 ms/div Circuit constants VCC = 15 V, VEE = -15 V R1 = 10 k, R2 = 20 k R3 = 100 k, R4 = 200 k C = 0.1 F
VA
0
Figure 14 HA17741 Triangular Wave Generator Operating Waveform Sawtooth Waveform Generator
R3 R2 Vin 6 k R4 3 k - R5 2.7 k R6 2.7 k C1 Q1 5 k VR VA 6 k + VB R1 I - R7 2.7 k R8 2.7 k VC + Vout
2SC1706 H
Figure 15 Sawtooth Waveform Generator
VR 0 Vout 0
Vertical: 5 V/div Horizontal: 2 ms/div Circuit constants VCC = 15 V, VEE = -15 V R1 = 100 k, C1 = 0.1 F Vin = 10 V
Figure 16 HA17741 Sawtooth Waveform Generator Operating Waveform
9
HA17741/PS
Characteristic Curves
Input Offset Current vs. Power-Supply Voltage Characteristics
20 R2
Voltage Offset Adjustment Circuit
Input offset current IIO (nA)
16
R1
2 56 3 1
12
8
R1
R2 a = 0%
R a = 100% VEE
4
0
3
6
9
12
15
18
Power-supply voltage VCC, VEE (V)
Power Dissipation vs. Power-Supply Voltage Characteristics
100 No load
Voltage Gain vs. Power-Supply Voltage Characteristics
120
Power dissipation Pd (mW)
60
Voltage gain AVD (dB)
80
110
100
40
90 RL 2 k
20
80
0
3
6
9
12
15
18
70
3
6
9
12
15
18
Power-supply voltage VCC, VEE (V)
Power-supply voltage VCC, VEE (V)
10
HA17741/PS
Maximum Output Voltage Amplitude vs. Power-Supply Voltage Characteristics
20
Input Offset Voltage vs. Ambient Temperature Characteristics
5 VCC = +15 V VEE = -15 V RS 10 k
Maximum output voltage amplitude VOP-P (V)
RL 2 k
16
Input offset voltage VIO (mV)
15 18
4
12
O PP
3
4
-V
O
8
+V
PP
2
1
0
3
6
9
12
0 -20
0
20
40
60
80
Power-supply voltage VCC, VEE (V)
Ambient temperature Ta (C)
Input Offset Current vs. Ambient Temperature Characteristics
20
Input Bias Current vs. Ambient Temperature Characteristics
120 100 80 60 40 20 0 -20 VCC = +15 V VEE = -15 V
Input offset current IIO (nA)
16
12
8 VCC = +15 V VEE = -15 V 4
0 -20
Input bias current IIB (nA)
0
20
40
60
80
0
20
40
60
80
Ambient temperature Ta (C)
Ambient temperature Ta (C)
11
HA17741/PS
Power Dissipation vs. Ambient Temperature Characteristics
90 120 VCC = +15 V VEE = -15 V No load
Voltage Gain vs. Ambient Temperature Characteristics
Power dissipation Pd (mW)
70
Voltage gain AVD (dB)
80
110
100
60
90
50
80
VCC = +15 V VEE = -15 V RL 2 k 0 20 40 60 80
40 -20
0
20
40
60
80
70 -20
Ambient temperature Ta (C)
Ambient temperature Ta (C)
Maximum Output Voltage Amplitude vs. Ambient Temperature Characteristics
16 20
Output Shorted Current vs. Ambient Temperature Characteristics
VO = VCC VCC = +15 V VEE = -15 V
Maximum output voltage amplitude VOP-P (V)
12 8 4 0 -4 -8 VCC = +15 V VEE = -15 V RL = 10 k
Output shorted current IOS (mA)
16
12
8
4
-12 -20 0 20 40 60 80
0 -20
0
20
40
60
80
Ambient temperature Ta (C)
Ambient temperature Ta (C)
12
HA17741/PS
Maximum Output Voltage Amplitude vs. Load Resistance Characteristics
16 1.6 1.2
Offset Adjustment Characteristics
VCC = +15 V, VEE = -15 V R1 = 51 , R2 = 5.1 k See the voltage offset adjustment circuit diagram. R = 10 k
Maximum output voltage amplitude VOP-P (V)
12
Output voltage Vout (V)
8 4 0 -4 -8 VCC = +15 V VEE = -15 V
0.8 0.4 0 -0.4 -0.8 -1.2 -1.6
R = 5 k
R = 20 k
-12 200 500 1 k 2k 5 k 10 k
0
20
40
60
80
100
Load resistance RL ()
Resistor position a (%)
Maximum Output Voltage Amplitude vs. Frequency Characteristics
28 1.4
Input Resistance vs. Frequency Characteristics
Maximum output voltage amplitude VOP-P (V)
20
Input resistance Rin (M)
5k 10 k 20 k 50 k 100 k 200 k 500 k
24
1.2
1.0
16
0.8
12
0.6
8
VCC = +15 V VEE = -15 V RL = 10 k
0.4
4
0.2
0 100 200 500 1k 2k
0
100 200
500
1k
2k
5k
10 k
20 k
50 k 100 k 200 k
500 k
1M
Frequency f (Hz)
Frequency f (Hz)
13
HA17741/PS
Phase vs. Frequency Characteristics
40 120
Voltage Gain vs Frequency Characteristics
VCC = +15 V VEE = -15 V Open loop
0
Voltage gain AVD (dB)
VCC = +15 V VEE = -15 V Open loop
100 80 60 40 20 0 -20 40
Phase (deg.)
-40 -80 -120 -160 -200 -240
50
100
200
500
1k
2k
5k
10 k 20 k
50 k 100 k 200 k
500 k 1 M
2M
10 20
50
100 200
500 1 k 2 k
5 k 10 k 20 k
50 k 100 k 200 k 500 k 1 M 2 M
Frequency f (Hz)
Frequency f (Hz)
Voltage Gain and Phase vs. Frequency Characteristics (1)
120
Voltage Gain and Phase vs. Frequency Characteristics (2)
120 100 80 60 40 -120 20 0 -20 -40
Voltage gain AVD (dB)
100 80 60 40 20 0 -20
Phase (deg.)
0
Voltage gain AVD (dB)
VCC = +15 V VEE = -15 V Closed loop gain = 60 dB AVD
VCC = +15 V VEE = -15 V Closed loop gain = 40 dB
0
-60
-60
-120
AVD
-180
-180
10 20
50 100 200 500
1k
2k
5 k 10 k 20 k
50 k 100 k 200 k 500 k 1 M 2 M
Frequency f (Hz)
10 20
50 100 200 500
1k 2k
5 k 10 k 20 k
50 k 100 k 200 k 500 k 1 M 2 M
Frequency f (Hz)
14
Phase (deg.)
HA17741/PS
Voltage Gain and Phase vs. Frequency Characteristics (3)
120 120
Voltage Gain and Phase vs. Frequency Characteristics (4) Voltage gain AVD (dB)
Voltage gain AVD (dB)
100 80 60 40 20 0 -20 -40 10 20
Phase (deg.)
80 60 40 20 0 -20 -40
VCC = +15 V VEE = -15 V Closed loop gain = 20 dB AVD
-60
-120
VCC = +15 V VEE = -15 V Closed loop gain = 0 dB AVD
-60
-120
-180
-180
50 100 200 500
1k
2k
5 k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2 M
10 20
50 100 200 500
1k
2k
5 k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2 M
Frequency f (Hz)
Frequency f (Hz)
Impulse Response Characteristics Test Circuit
0.8
Rise time vs. Power-Supply Voltage Characteristics
Vin = 20 mV RL = 2 k CL = 100 pF
2 6 3
Vout CL RL
0.6
Vin
Rise time tr (s)
0.4
Vout = 90% Vout 10% tr
V2
V2 x 100 (%) V1
0.2
V1 0 3 6 9 12 15 18
Power-supply voltage VCC, VEE (V)
Phase (deg.)
100
0
0
15
HA17741/PS
Overshoot vs. Power-Supply Voltage Characteristics
40 Vin = 20 mV RL = 2 k CL = 100 pF 30 40
Impulse Response Characteristics
VCC = +15 V VEE = -15 V RL = 2 k CL = 100 pF Vin = 20 mV
Output voltage Vout (mV)
Overshoot Vover (%)
30
20
20
10
10
0
0 3
6
9
12
15
18
0
0.4
0.8
1.2
1.6
Power-supply voltage VCC, VEE (V)
Time t (s)
16
HA17741/PS
Package Dimensions
Unit: mm
9.6 10.6 Max 8 5 6.3 7.4 Max 1 0.89 4 1.3 2.54 Min 5.06 Max
1.27 Max
7.62
0.1 Min
0.25 - 0.05 0 - 15
Hitachi Code JEDEC EIAJ Mass (reference value)
+ 0.10
2.54 0.25
0.48 0.10
DP-8 Conforms Conforms 0.54 g
17
HA17741/PS
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to:
Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Strae 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.
18


▲Up To Search▲   

 
Price & Availability of HA17741

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X